Characterisation of optical elements for soft X-ray microprobing and microscopy

Matthew Shand

Silson Ltd.

(King's College London)

Talk outline

Experimental outline

Microfocus X-ray source description

Microprobing

- Microstructured Optical Arrays (MOAs)
- Optical Characterisation
 Zone plates

Microscopy

- Microscope X-ray Invitro (McXI)

 - Characterisation results

The microfocus soft X-ray source

- Electron bombardment X-ray source
- Interchangeable target materials AI (K_{α} =1.477 keV), C (K=0.277 keV)
- ≈200 µm diameter X-ray source

Microfocus source coupled to detector

Microstructured Optical Array (MOA)

- Developed as part of the Smart X-ray Optics consortium
- Reflections from an array of channels contribute to focused spot
- Single and double reflections considered along X-ray path
- Active control of focal length
- Radiobiological microprobe experiments (2 μ m diameter focused spot of Ti K_a X-rays from a 5 μ m X-ray source)

R. Willingale et al. "Active Microstructured Optical Arrays of Grazing Incidence Reflectors". X-Ray Optics and Instrumentation (2010)

Manufacture of MOAs TMAH

(Bosch Process)

DRIE

(Alkaline solution)

20 µm

Roughness ≈ 8 nm RMS (min.)

70 µm

Roughness \approx 1.5 nm RMS

Spider MOAs

- For an appropriate focal length, $R \approx 50 \text{ mm}$
 - Not achievable using simple designs (R = 420 mm min.)
- Spider-like levers etched into silicon substrate enhance the curvature across the active area
- Mechanical testing of spider MOAs indicates R=30 mm

Simulation of MOA focusing properties

- Simulation of focusing effect for a MOA array
- X-rays reflected (red pixels) by each channel contribute to a common focused spot at $z_d=z=160$ mm
- Focused spot is isolated from unreflected (blue) X-rays by central stop

Experimental method for characterisation of MOAs

- Displacement of MOA channels from optical axis separates reflected radiation from unreflected "background"
- Ideal for use with microfocus X-ray source.

Simulation of MOA displacement (y_{T})

Experimental characterisation of MOAs

TMAH etched MOA Broadband Al X-rays z=z'=300 mm

Experimental characterisation of MOAs

z=z′=300 mm

Position stability of DRIE vs TMAH

DRIE etched MOA

• Symmetrical about either side of optical axis

TMAH etched MOA

• Shift in reflected position occurs due to taper in channel structure

STSM – Characterisation of a prototype soft X-ray microscope

- Autumn 2009
- Aim: To characterise the performance of the McXI-I (Microscope X-ray In-vitro) prototype soft X-ray microscope (www.mcxi.eu)
- In collaboration with NANO-UV
- Additional work has since been conducted at KCL, to characterise the microscope using the microfocus Xray source described

McXI-I microscope

Zone Plate (ZP) characterisation

Typical Au electroplated ZP (d_n=100 nm) Silson Ltd.

3 µm

1st order diffraction pattern produced by ZP (C, Al)

Diffraction pattern of Condenser ZP

Broadband X-rays produced by C target

Conclusions

- A microfocus X-ray source has been developed at KCL for characterisation of soft X-ray optics
- This source has been used to characterise unactuated MOAs, and shows good comparison with simulation
 - The performance of actuated MOAs may now be considered in a similar manner
- Initial tests of the performance of the McXI-I microscope have also been performed using this Xray source

Acknowledgements

King's College London (KCL)

- Graeme Morrison
- Alan Michette
- Slawka Pfauntsch

Members of SXO consortium

- University of Birmingham
- Scottish Microelectronics Centre (SMC)
- STFC Daresbury
- Mullard Space Science Laboratory (MSSL)
- University of Leicester
- University College London

The Smart X-ray Optics Consortium was funded by UK Research Councils' Basic Technology programme, grant code D04880X NANO-UV

- Peter Choi
- •Grainne Duffy
- •Keith Powell

STSM funded by COST MP0601

Development of McXI-II microscope

- NANO-UV (Paris, France)
- Silson Ltd. (Northampton, UK)
- Delong Instruments (Brno, Czech republic)

Supported by supported by the Eurostars Program McXI Σ!4885