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X-Ray Sources @ Southampton 

• Ultrafast Laser HHG soft x-ray source 

• MuVis large sample Tomographic imaging 
suite  

• National Crystallography Centre  
– Single crystal diffraction 

– Powder diffraction 

– Protein Crystallography 

• X-Ray absorption, EXAFS {Diamond Light 
Source} 



The Phase Problem 

• Difficulty with x-ray optics means we can’t 
image in the way we might in the optical 
region 

• This means we record  

– Shadow images 

– Diffraction patterns 

– Intensity but not phase  



What do we do? 

• Ignore the phase 
– Radiography 

– Tomography 

• Work out the phase 
– Crystallography – work out phase of each Bragg 

spot using experimental and computational 
methods 

– Imaging – use over sampling and constraints to 
calculate the phase and so computationally re-
image the x-rays 



DON’T WORRY ABOUT THE PHASE 







The MuVis Facility 





Tree branch 



Archaeological charcoal samples 



Bressan 











CALCULATE THE PHASE  





TAKE ADVANTAGE OF COHERENT 
SOURCES 



Southampton HHG source 
• Pump laser: Ti:sapphire – 800 nm 

• 38 fs pulses,  3 mJ pulse energy, 1 kHz rep rate  

• mid 1014 W/cm2 when loosely focused 

• Geometrical phasematching via capillary waveguide or Guoy 
shift in gas cell  (both sources used experimentally) 

 • Southampton XUV source output 
parameters: 

• Wavelength 18-40 nm 

• Efficiency ~10-5 – 1W input, 10 W out 

• High spatial coherence 

• 1012 photons per second in a 1 mrad beam, 1% 
bandwidth 

• M2 ~ 2 before focusing 

• Pulse envelope length ~10 fs 
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The HHG lab at Southampton 
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Unique source properties 

• Lab-based source of 30 eV-1 keV 

• Spatially coherent 

– Imaging – major research topic 

– Lithography – inspection of components 

• Short (attosecond) pulses – dynamics of electrons in 
atoms/molecules 

• Highly synchronised – low jitter, pump/probe experiments 
possible 

But: 

• Flux is low (1 nJ/pulse, 1 W average) 

• Lasers are expensive & complex (at the moment) 
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Spatial coherence 

• nonlinear frequency 
conversion preserves  
spatial coherence of 
source 

• HHG beans demonstrated 
to be highly spatially 
coherent via two-beam 
interference 

• Important for many 
experiments – imaging, 
focusing 
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Bartels, R. a et al. Generation of 
spatially coherent light at extreme 
ultraviolet wavelengths. Science (New 
York, N.Y.) 297, 376-8(2002). 



Samples: self-organised PMMA 
sphere arrays 

• Samples produced by C.F. Chau, ORC, 
Southampton. 

• Diameter 196nm, size 
variation < 5% 

• Single layer of spheres on 
50 nm SiN membrane 

• Ordering good, but not 
perfect. 

• Uses: photonic/plasmonic 
crystal templates 
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Experimental setup 

XUV source: HHG in Ar-filled capillary or cell, peaked at ~29 nm 
XUV mirror:  Spherical Mo/Si multilayer (IOF Jena) 
Detector: ANDOR XUV CCD, 17mm from sample 

sample 

f=30cm Mo/Si mirror 

Vacuum chamber 

Vacuum chamber 

f=50cm mirror 

gas cell 

Al foil filter 

XUV CCD 
Camera 
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• Samples produced by C.F. Chau, ORC, 
Southampton. 

Samples: self-organised PMMA 
sphere arrays 

• Diameter 196nm, size variation < 
5% 

• Single layer of spheres on 50 nm 
SiN membrane 

• Ordering good, but not perfect. 
• Uses: photonic/plasmonic 

crystal templates 
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Scattering from ordered sphere regions 

XUV transmission diffraction 
from 196nm sphere array, 
~10μm XUV focal spot on 
sample 
 
•Radially: multiple wavelengths 
give multiple spots 
•Tangentially: structural 
information 
•Other distortions arising from 
XUV phase front distortion 
 

Red rings are 100 mrad angle contours 
Intensity scale is logarithmic. 
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Scattering from multiple grains 

Scattering patterns are very 
sensitive to grain boundaries 
 
This image shows the ~20 m 
XUV spot positioned over two 
grains, with ~30°between the 
lattice orientations 
 
XUV beam positions with 
single crystal diffraction 
patterns are common across 
samples   
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Lensless imaging: Phase retrieval 

Collection of scattered radiation from an object 

Traditional microscopy uses a lens to re-phase 
the different Fourier components to create an 
image – only intensity information is retained. 
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Lensless imaging: Phase retrieval 

Collection of scattered radiation from an object 

In phase retrieval, the scattered light is 
collected and phases lost. 
Phase info is re-established via iterative 
algorithm 
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Coherent Diffractive Imaging (CDI) 
• Developed for X-ray crystallography – the “phase problem” 

• Iterative application of constraints in object and Fourier space: 

Take FFT 

replace intensity 
with known 

pattern (Fourier 
space constraint) 

Reverse FFT 

is the outer region 
black? – make it 
black (real space 

constraint) 

Guess object from 
autocorrelation & 

random phase 



Test results 



Phase information is useful 













Biological Sample Preparation 
 



Imaging neurons 





Future  

• Now developing the water window imaging at 
4 nm 

• Plan for 1 A coherent source 



Southampton Ultrafast X-ray group 
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