ELLIPSOIDAL CONCENTRATORS FOR LABORATORY X-RAY SOURCES: ANALYTICAL OPTIMIZATION

I.V. Yakimchuk ${ }^{1,2}$, I.V. Kozhevnikov ${ }^{1}$, V.E. Asadchikov ${ }^{1}$ ${ }^{1}$ Shubnikov Institute of Crystallography RAS, ${ }^{2}$ Lomonosov Moscow State University,
 e-mail: yaivan@list.ru

The conventional approach for optimization of the ellipsoidal monocapillary concentrator parameters consists in numerical simulation, e.g., with the use of ray-tracing technique. In the present work the optimization problem is solved analytically.

1. Point source

It is easy to show that efficiency of the ellipsoidal concentrator (the power transmission coefficient) for a point source can be expressed:

$$
\begin{equation*}
v_{W} \equiv \frac{W}{W_{0}}=\int_{\varphi_{\text {min }}}^{\varphi_{\text {max }}} R(\theta) \sin (2 \varphi) d \varphi, \tag{1}
\end{equation*}
$$

W_{0} - the power radiated by the point source to the concentrator half-space, W - the power concentrated in the ellipsoid focus, φ - angle between the ray and the symmetrical axis of the ellipsoid, $\varphi_{\max }$ and $\varphi_{\min }$ are defined by the positions of the front and back ends of the concentrator, θ - grazing angle, $R(\theta)$ - Fresnel reflection coefficient depending on θ and the dielectric permittivity of a reflecting coating $\varepsilon(\varepsilon=1-\delta+i \gamma)$.

With approximations we obtain:

$$
\begin{align*}
& v_{W}=\frac{W}{W_{0}}=4 \sqrt{\delta^{2}+\gamma^{2}} \cdot Y\left(\tau_{\min }, \gamma / \delta\right), \quad Y \approx \frac{1}{2} \int_{\eta_{\min }}^{\eta_{\max }} R\left(\tau, \frac{\gamma}{\delta}\right) \eta d \eta ; \quad R\left(\tau, \frac{\gamma}{\delta}\right)=\left|\tau-\sqrt{\tau^{2}-\exp (i \alpha)}\right|^{4} ; \\
& \tau \equiv \frac{\theta}{|1-\varepsilon|^{1 / 2}}, \quad \eta \equiv \frac{\varphi}{|1-\varepsilon|^{1 / 2}}, \quad \tau=\frac{\eta}{2}+\frac{\tau_{\min }^{2}}{2 \eta} ; \quad \tau_{\min } \equiv\left[\frac{2(1-e)}{|1-\varepsilon|}\right]^{1 / 2} ; \quad \exp (i \alpha) \equiv \frac{1-i \gamma / \delta}{\sqrt{1+\gamma^{2} / \delta^{2}}} . \tag{2}
\end{align*}
$$

Figure 1. Parabolic concentrator efficiency dependence on the radiation wavelength for different reflecting materials. Approximate curve calculated by formula (2).

The Y value dependencies on the one of the approximate problem parameters $\gamma / \delta, \tau_{\min }$, as well as $L / 2 F$ and $\eta_{\max }$ for the case of finite ellipsoid length L, are shown on fig. $2-5$.
Figures 2 and 3 shows that necessary conditions for maximum efficiency are: $\gamma / \delta<0.1$ and $\underline{\tau}_{\text {min }}<\mathbf{0 . 4}$.
In case of finite ellipsoid length the η integration limits are connected:

$$
\eta_{\max }^{2}=\frac{\eta_{\min }^{2}\left(1+\frac{L}{2 F}\right)+\tau_{\min }^{2} \frac{L}{2 F}}{1-\frac{L}{2 F}\left(1+\frac{\eta_{\min }^{2}}{\tau_{\min }^{2}}\right)}
$$

Thus Y is a function only of $\eta_{\max }$ for the finite length concentrator, if other parameters $\left(\gamma / \delta, \tau_{\min }, L / 2 F\right)$ are fixed.

Figure 4. $Y\left(\eta_{\max }\right)$ for fixed $\gamma / \delta=0.1$ и $\tau_{\min }=0$. and different values of $L / 2 F$.

Figure 5. $Y(L / 2 F)$ for different $\tau_{\min }$ and $\gamma / \delta=0.1$ (left); for different γ / δ and $\tau_{\min }=0.4$ (right)
We decided to check this result by ray tracing technique. This simulation has approved increasing of power transmission coefficient with source size increasing till critical value (fig. 7). Let's consider reflection of disk source radiation from one point on a surface to explain it (fig. 8). It's easy to find the curve corresponding to the source points which illuminate the reflection point at
a fixed grazing angle (fig. 9).

Figure 10. The power transmission
coefficient dependence on the source

This curve divides the source into two unequal parts, bigger part corresponds to lower grazing angles. That is the possible reason for increasing of the concentrator efficiency with increasing of the source size (see Fig. 10).

3. Conclusions

The optimization of ellipsoidal concentrators was solved analytically in the present work. The concentrator efficiency was expressed via several dimensionless parameters that allows us: 1) fast evaluation of the concentrator efficiency in the given conditions,
2) fast determination of the optimal concentrator parameters for given case (see Table).

We can assert that satisfaction of several conditions $\left(\nsim / \boldsymbol{\delta}<\boldsymbol{0 . 1}, \underline{\boldsymbol{\tau}}_{\text {min }} \leq \mathbf{0 . 4}, \underline{\boldsymbol{L}} / \mathbf{2 F}>\boldsymbol{0} .5, \boldsymbol{\eta}_{\text {max }}>\mathbf{3}\right.$ and $\underline{\boldsymbol{r}}_{\max }\left(\boldsymbol{2 F} \boldsymbol{\theta}_{c} \underline{<\mathbf{0 . 0 4}}\right)$ will result to the power transmission coefficient value of at least $\mathbf{6 5 \%}$ of the maximum possible (in paraboloid case).

Table of concentrator optimal parameters (fig. 11) for fixed source-sample distance $2 \mathrm{~F}=\mathbf{4 0 0} \mathrm{mm}$ and different wavelength

λ, \AA	$\mathbf{2 r}_{\text {max }}, \mathbf{M m}$	\mathbf{e}	$\mathbf{L}, \mathbf{M m}$	$\mathbf{L}_{\mathbf{1}}, \mathbf{M m}$	$\mathbf{L}_{2}, \mathbf{M M}$	$\mathbf{D}_{\text {in }}, \mathbf{M m}$	$\mathbf{D}_{\text {out }}, \mathbf{M M}$	\mathbf{v}	$\mathbf{v} / \mathbf{v}_{\text {par }}$
1.54	<0.16	0.999992	200	6.98	193.02	0.20	1.55	$2.64 \mathrm{E}-4$	0.75
9.89	<0.92	0.9998	200	6.91	193.09	1.16	8.83	$5.35 \mathrm{E}-3$	0.7
44.8	<2.95	0.998	200	6.19	193.81	3.63	28.29	0.045	0.69
135	<7.82	0.982	200	1.38	198.62	8.34	75.96	0.43	0.82

4. References

[1] Vinogradov A.V., Zorev N.N., Kozhevnikov I.V., Trudy FIAN, 176, 195-210 (1986)
[2] Vinogradov A.V., Tolstikhin O.I., Trudy FIAN, 196, 168-181 (1989)
[3] Bilderback D.H., Hoffman S.A., Thiel D.J., Science, Vol.263, 201-203 (1994).
[4] Balaic D.X., Nugent K.A., Barnea Z., Garret R.F., Wilkins S.W., J.Synch.Rad., 2, 296-299 (1995).

