

EUV interference lithography with a laboratory gas discharge source

Next-generation nanopatterning

Serhiy Danylyuk

JARA|FIT Outline

- Motivation
- Laboratory EUV sources
- Possible approaches to EUV-IL
- Optimisation of DPP EUV source
- Experimental realization
- Proof of principle exposures
- Summary and outlook

JARA|FIT

Motivation

There is a strong demand for labscale EUV IL setup for creation of dense periodic patterns with sub-20 nm resolution.

Applications:

- templates for guided self-assembly
- ultra high density patterned magnetic media
- nano-optics, meta-materials
- quantum dot 2D and 3D arrays, nanowire arrays

Nanopatterning Solutions

- Electron-beam Lithography: High resolution, limited throughput, charging effects, proximity effect
- Nanoimprint Lithography: High resolution, high throughput, low cost, oneto-one replication, master degradation, contact, residual layer
- Scanning probe Lithography: High resolution, limited throughput
- Self-assembly: High resolution, low pattern perfection
- EUV Interference Lithography: High resolution, moderate throughput, no charging effect, negligible proximity effect, periodic patterns only

Relevant lengths for EUV-IL

	Length	Significance
Wavelength	~10-15 nm	Spatial resolution of aerial image
Absorption length	~50-100 nm	Exposable film thickness, surface sensitivity
Photo/secondary electron path length	< 1-2 nm	Blur, proximity effect
Average distance between photo-absorption events	~2.5nm (for dose 1000J/cm³, E _{ph} =92.5eV)	Statistics, roughness
Recording medium/process	?	Molecular size, diffusion, dissolution

H. Solak, MNE07, Copenhagen, 26 Sep 07

COST Action MP0601

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Laboratory EUV sources - Coherent

Direct lasing

*J. Rocca, Colorado State University

High-order harmonic generation in an atomic gas ionized by a fs laser pulse.

P~ 1 nW P= 48 nW *S.Kim et al, Nature 453,757 (2008) *FST Co. & Samsung (2011)

Power is high enough, but spatial and temporal coherences are low.

Interference schemes with relaxed coherence requirements have to be used.

JARA |FITCOST Action MP0601Possible schemes for EUV-IL

Sʻ

Lloyd mirror

S

Dr. Serhiy Danylyuk

danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

8

No mask needed.

Requirements				
Temporal coherence	Spatial coherence	Other		
High	High	High mirror quality		

COST Action MP0601

Dr. Serhiy Danylyuk

danylyuk@tos.rwth-aachen.de

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Possible schemes for EUV-IL

Double grating

Resolution limit is $p_2/2$

Additional grating provides solves the coherence problem... at the cost of ~90% of power

Requirements			
Temporal coherence	Spatial coherence		
Low	Low		

JARA|FIT COST Action MP0601 danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011 **Possible schemes for EUV-IL - Talbot**

Dr. Serhiy Danylyuk

12

Talbot self-imaging

Mask
periodBandwidth
@11nmRequired
coherence100 nm3.2 %12.5 μm40 nm3.2 %5 μm

JARA |FIT COST Action MP0601 DPP EUV source 70

Xe

Repetition rate up to 4 kHz

EUV (10 – 20 nm): > 400 W/2πsr EUV (13.5 nm, 2% bw): 65 W/2πsr

Dr. Serhiy Danylyuk

danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

PHILIPS

Admixture of Ar to Xe plasma allows to supress 12-16 nm lines resulting in radiation at 10.9 nm with 3.2% bw

K. Bergmann, S.V. Danylyuk, L. Juschkin, J. Appl. Phys. V.106, 073309 (2009) 13

Source optimisation - Theory

11 nm - 4f-4d transitions Transition probabilities: $A_{ul}=5*10^{11} \text{ s}^{-1} \text{ to } 2*10^{12} \text{ s}^{-1}$

12 – 16 nm – 5p-4d lines Transition probabilities: A_{ul} =5*10⁹ s⁻¹ and 5*10¹⁰ s⁻¹

Brightness is scaling as:

$$L \propto n_i^l n_e$$

0.1 – 1 mm for 5*p*-4*d* lines – optically thin 2 – 20 μ m for 4*f*-4*d* lines – optically thick $L \propto rac{\Delta \lambda_{Doppler}}{\lambda^5} rac{1}{\exp \left(\Delta E/T_e
ight) - 1}$

Reduction of the density of the emitting ions should not affect 4f-4d transitions strongly, if a constant electron temperature is maintained

Spatial coherence measurements

Spatial coherence lengths up to 27 µm was measured

Exposure stage

- Wafer-mask control with nanometer precision
- Compact and rigid to minimize vibrations
- Minimum optical components to reduce power loss

RATHA

17

Transmission masks

- Flat Nb membranes with size up to 4 mm² are achieved
- Resist patterned with 50 keV e-beam lithography
- Pattern transferred to ~80 nm thick nickel by ion beam etching
- EUV 1st order diffraction efficiency ~9-9.5%

RWITHAACHEN UNIVERSITY

Transmisson measurements

Theoretical transmission curves of the investigated membrane and measured transmittance at 11nm

Emission spectrum of DPP source with Xe/Ar gas mixture measured with and without 300nm Nb-filter

JARA|FIT

COST Action MP0601

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Mask Patterns

Vergoterug = 10:18:X 2 Marcola 2019 (marcola 2019) accessor hex. pinhole array: p=100nm,

dia.=40nm; scale=200nm

L/S array: p=200nm, lines=160nm, spaces=40nm; scale=200nm

mask layout incl. markers; scale=100µm

nanoantenna array: p=3µm, a=2µm, b=220nm; scale=1µm

rect. pinhole array: p=100nm, dia.=40nm

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Test exposures – Talbot lithography

Distance to mask z= 50 µm achromatic Talbot (with the same transmission mask!)

COST Action MP0601

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Applications

SFB 917 Nanoswitches

cross-bar arrays for PCRAM

nanodot-arrays for QD self assembly

Nanophotonic resonators

COST Action MP0601

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

Lithography simulations (Dr. Litho)

\Rightarrow Simulation modules (\rightarrow Research area)

Source	Mask	Resist
 ✓ Wavelength ✓ Bandwidth ✓ Pupil shape ✓ Cope angle 	 ✓ Absorber ✓ Transmittance ✓ Scalar diffraction models (Kirchhoff, BS L II) 	 ✓ Stack, Resist parameter (Dill ABC) ✓ Exposure time ✓ PEB time, temp. (Diffusion) ✓ Develop time (Mack parameter)
✓ Cone angle✓ Polarization	 ✓ Rigorous diffraction simulation 	 ✓ Resist profile (Process windows)

JARA|FIT

Dr. Serhiy Danylyuk danylyuk@tos.rwth-aachen.de Paris, November 18th, 2011

• Simulation (Aerial image at 15 µm gap)

30 nm hp Talbot carpet

 ✓ Simulations show good correlation with experimental results

Summary

JARA|FIT

- EUV Interference lithography is a powerful tool for cost efficient patterning of nanoscale periodic arrays
- Optimized high power gas discharge source can be effectively used as a source for EUV-IL
- Talbot lithography is the most efficient solution for nanopatterning with sources of limited coherence.
- Nb-based transmission masks can be used as an universal solution for interference lithography with wavelength between 6 and 15nm
- •The resolutions down to sub-10nm are possible, limited by mask quality and resist performance

EUV-IL exposure tool for 4" wafers

- Input power 5.6kW
- Pinch radius 100µm
- 100W/(mm²sr) brilliance at 10.9 nm
- 65mm x 65mm exposable
- Single field size > 4mm²
- Field exposure time < 30s
 @ 30 mJ/cm²

Acknowledgements RWTH Aachen:

Dr. Larissa Juschkin, Sascha Brose, Hyun-su Kim, Prof. P. Loosen, Prof. Th. Taubner Fraunhofer ILT:

Dr. Klaus Bergmann, Dr. Marcus Benk Forschungszentrum Jülich

IBN-1:

Prof. Detlev Grützmacher, Dr. Jürgen Moers, Klaus Wambach, Dr. Gregor Panaitov, Dr. Gregor Mussler

IBN-PT:

Dr. Stefan Trellenkamp, Elke Brauweiler-Reuters, Karl-Heinz Deussen, Alfred Steffen, Hans Wingens, Jürgen Müller, Bernd Hermans, Jana Mohr, Stephy Bunte

