Laboratory X-ray reflectometer for liquid interfaces investigation

V.E. Asadchikov¹, V.V. Volkov¹, Yu.O. Volkov¹, K.A. Dembo¹, I.V. Kozhevnikov¹, <u>B.S. Roshchin¹</u>, A.M. Tikhonov², D.A. Frolov¹ ¹A.V. Shubnikov Institute of Crystallography RAS, Moscow, Leninskii pr. 59 ²P.L. Kapitza Institute for Physical Problems RAS, Moscow, Kosygina str. 2 e-mail: <u>ross@crys.ras.ru</u>

A.V. Shubnikov Institute of Crystallography

Aleksey Vasil'yevich Shubnikov (1887 – 1970) was a founder of Russian crystallography. He expanded crystallography from mineralogy to physics, chemistry and mathematics.

Institute of Crystallography developed from Shubnikov's crystallography laboratory which was founded for developing quartz single crystals growing technique.

Now Shubnikov Institute of crystallography consists of more than 20 departments which cover broad area of science: inorganic crystals growth, protein crystallography, X-ray diffractometry, reflectometry, scattering, scanning probe and electron microscopy, synchrotron radiation techniques, etc.

Design Department of SCI

Triple-crystal X-ray spectrometer

Focusing monochromator at EXAFS beamline

Crystallizer for horizontal sapphire growth

Focusing mirror of "Protein" beamline at Kurchatov Institute Synchrotron Source

Overall view of the reflectometer

Reflectometer layout

(1) X-ray tube;

(2) monochromator crystal;

(3, 12) collimating system;

(4) ring support for the X-ray tube;

(5) ring support for the detector;

(6) scintillation detector;

(7) rotation axis of ring supports4 and 5;

(8) test sample;

(9) sample holder with the

alignment table;

(10) X-ray beam;

(11) position-sensitive linear detector;

(13) analyzer crystal.

Inverse problem of X-ray reflectometry

I.V. Kozhevnikov. Physical analysis of the inverse problem of X-ray reflectometry // Nuclear Instruments and Methods in Physics Research A.— 2003.— Vol. 508.— Pp. 519–541.

Medical applications of acryl polymers

Reflectometry of polymer layers on water

V.E. Asadchikov, V.G. Babak, A.V. Buzmakov et al // Instruments and Experimental Techniques (in Russian), 2005, V. 3, PP. 99–107

Reflectometry of polymer layers on water

V.E. Asadchikov, V.G. Babak, A.V. Buzmakov et al // Instruments and Experimental Techniques (in Russian), 2005, V. 3, PP. 99–107

Silica sol – colloidal solution of SiO₂ nanoparticles in water

Reflectometry of water and silica sol surfaces

Dielectric permeability profile reconstruction for silica sol

Dielectric permeability profile reconstruction for silica sol

Small-angle scattering

Size-dispersion of SiO₂ particles in sol obtained by SAXS

Double ionic layer formation

Grazing incidence small-angle scattering

Scattering on the silica sol surface

Lipid membranes

http://www.psc.edu/science/2007/bardomain/

Lipid membranes

http://arisumi-illustration.com/blog

1,2-Distearoyl-sn-glycero-3phosphocholine (DSPC)

Formula	C ₄₄ H ₈₈ NO ₈ P
Molecular weight	790.145

http://www.avantilipids.com

DSPC monolayer on SM-30 sol

DSPC monolayer on SM-30 sol

DSPC monolayer on TM-50 sol

DSPC monolayer on TM-50 sol

Conclusion

- Laboratory reflectometer provided complex X-ray technique applied. It is revealed that silica sol has nearsurface structure of several layers which depth is more than 50% higher than it was previously thought.
- The possibility to use silica sol as a substrate for lipid monolayers is shown.
- The raising of near-surface SiO₂ particles density while deposing lipid on the sol surface is found. It is determined apparently by positive potential formation caused by Na⁺ ion diffusion into the lipid monolayer.

Thank you for attention!