Table-top EUV/XUV source for metrology applications

NEXAFS spectroscopy

Klaus Mann

Dept. Optics / Short Wavelengths

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

Dept. "Optics / Short Wavelengths"

Beam and Optics Characterization (DUV)

- > Optics test (351...193 nm)
 - (Long term) degradation (10⁹ pulses)
 - Non-linear processes
 - LIDT
 - Absorption / Scatter losses
 - Wavefront deformation

- Wavefront
- coherence
- M²

- > EUV/XUV technology
 - Source & Optics
 - Metrology
 - Material interaction

Types of laser produced plasmas					
Target material	Solid	Liquid	Gas		
	500 9 Cold 259.9 Suitestand 6024 14				
Advantages	 + conversion efficiency + Small plasma (~50µm) 	 + conversion efficiency + mass limited, small target (~50µm) 	 + "clean" (no debris) + high flexibility + high stability + low effort 		
Disadvantages	unflexible"dirty" (debris)	 high effort debris: "snowballing" 	 relatively low brilliance size ~300µm 		

EUV/XUV radiation:

Lab source for metrology

- Univ. Prag
- Univ. Göttingen
- Max-Planck Inst.

XUV: 1...10nm

EUV: 10...20nm

Laser-Laboratorium

Ablation / damage thresholds @13.5nm

Laser-Laboratorium Göttingen e.V.

Laser driven EUV/XUV plasma source setup

- ▶ 1.2 J/cm² (@ 13,5 nm, 2 % bandwidth)
- > 7.4 J/cm² (filtered by 2 Mo/Si mirrors)

KLA Tencor

F. Barkusky, K. Mann et al., Optics Express 18, 4347 (2010)

Integrated source and optics system: → EUV direct structuring

Schwarzschild objective @13.5nm (Mo/Si):

Laboratorium Göttingen e.V.

Laser-

Color Centers in LiF

EUV Diffraction experiment

- Pinhole (Ø 50µm) behind plasma
- mesh before objective
 - \rightarrow diffraction pattern imprinted on PMMA

Soft x-rays with lab source: NEXAFS Spectroscopy

Laser-Laboratorium Göttingen e.V.

= Near-edge x-ray absorption fine-structure

Absorption in unoccupied molecular orbitals

- \rightarrow "Fingerprint" of molecules
 - surface-sensitive chemical analytics
 - polychromatic concept

Plasma in Kr gas jet \rightarrow "water window" / Polyimide (d=200nm):

C. Peth, K. Mann et al., J. Phys. D 41 (2008) 105202

Setup of NEXAFS Spectrometer

Laser-Laboratorium Göttingen e.V.

XUV plasma (Kr) with pinhole camera

- Table-top system
- "Single-shot"
- Pump-probe exp.

Single pulse NEXAFS spectra

NEXAFS spectroscopy on thin films

Laser-Laboratorium Göttingen e.V.

Lipid membranes (carbon K-edge) (T. Salditt)

Courant Research Centre Nano-Spectroscopy and X-Ray Imaging

Wavelength [nm] 4,3 4,2 4,4 4,1 3,9 DOPS **Optical density** 3 DOPC 2 DMPC 305 290 295 300 310 285 315 Photon energy (eV)

NEXAFS spectra of PMMA

Laser-Laboratorium Göttingen e.V.

PLD: PMMA films (200nm)

- > Softer as bulk material \Leftrightarrow shorter polymer chains
- C=C bonds visible

UV irradiation

- > Chemical changes :
 - Loss of C=C bonds
 - Increase of C=O bonds
 - repolymerization
 - \rightarrow bulk material

XUV source improvements: Comparison: ns – ps laser Laser-Laboratorium Göttingen e.V. Single pulse spectra: N (Z = 7) O(Z = 8)Ne (Z = 10)10⁴ 10^{4} 10^{3} 150ps 380mJ '10³- 10^{3} 10² 10^{2} 10² 8ns 10¹ 450mJ 10¹ 10¹ 200 1000 200 400 600 800 400 600 1000 200 400 800 600 800 1000 Photon energy (eV) Photon energy (eV) Photon energy (eV) 10^{4} 10^{4} 10⁴ 10^{3} 10^{3} 10³ Xe (Z = 54) Ar (Z = 18)Kr (Z = 36) 10^{2} 10^{2} 10^{2} 400 200 200 400 600 800 1000 600 200 400 800 1000 600 800 1000 Photor energy (eV) Photon energy (eV) Photon energy (eV)

Peak brillance of isolated N line @ $\lambda = 2.88$ nm:

 $6^{*}10^{17}$ (ns-Laser) \Rightarrow 1.2^{*}10²⁰ Ph./(s mrad² mm² 0,1%BW) (ps-Laser)

Enhancement of particle density in gas jet:

increased brillance from shock wave

Laser-Laboratorium Göttingen e.V.

Pinhole camera image of Nitrogen plasma p=10bar / Ti-filtered

distance to nozzle	500 μm		1800 μm
FWHM	521 μm	-0.71	371 μm
E _{total}	1.02 MCnts	-3.35	3.42 MCnts
E _{max}	421 Cnts	-5,27	2220 Cnts

scanning spectro-microscopy

Thank You !

- Coworkers: Dr. B. Schäfer
 - Dr. A. Bayer
 - Dr. U. Leinhos
 - Dr. F. Barkusky
 - J.O. Dette
 - M. Lübbecke
 - M. Reese
 - B. Flöter
 - P. Grossmann
 - M. Olschewski
 - S. Döring
 - T. Mey
 - J. Sudradjat

- 1. Table-top EUV/XUV source
 - experimental
- 2. Metrology applications
 - reflectometry
 - Damage of EUV optics
 - NEXAFS spectroscopy
- 3. Source improvements
- 4. Characterization of EUV/XUV radiation (FLASH)
 - wavefront measurement / Hartmann(-Shack) sensor
 - optics alignment

Hartmann-Shack wavefront sensor:

Beam characterization of Free Electron Laser FLASH

B. Flöter, K. Mann, K. Tiedtke et al. NIM A 635, S108–S112 (2011)

Ablation / damage thresholds @13.5nm

Laser-Laboratorium Göttingen e.V.

Laser driven EUV/XUV plasma source setup

- > 1.2 J/cm² (@ 13,5 nm, 2 % bandwidth)
- > 7.4 J/cm² (filtered by 2 Mo/Si mirrors)

F. Barkusky, K. Mann et al., Optics Express 18, 4347 (2010) (OSA Spotlight)

- Isolated N VI 1s²-1s2p line @ 2.8787nm (Ti filtered)
- Peak brillance [Photons/(s mrad² mm² 0,1%BW)]
 - > ns-Laser: $6*10^{17}$ (LLG, T. Wilhein)
 - ▶ ps-Laser: 1,2*10²⁰(LLG) ●

NEXAFS-Spektrum bisDM/

Dünne Schichten bisDMA (Weichmacher)

- > Beeinflussung Polymerkettenlänge z.B. PMMA
- Suche nach optimalem PLD Parametersatz
- Variation Target Substratabstand

MATERIAI PHYSIK

Laser-

Laboratorium Göttingen e.V.

- Parameter-Abhängigkeit der C=C Bindungen
- C=C Bindungen als Maß f
 ür die Unversehrtheit des bisDMA
- ➤ Kürzerer Abstand → besseres Ergebnis?
- Weitere Untersuchungen nötig

Peter Großmann

Compact NEXAFS spectrometer

EUV reflectometry

