Characterisation of the X-ray microprobe in Krakow and properties of the beam focusing system

Sebastian Bożek ^{1,2}, Jakub Bielecki ¹, Zbigniew Stachura ¹, Janusz Lekki ¹, Roman Hajduk ¹, Henryk Doruch ¹, Wojciech M. Kwiatek ¹

¹ The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

² The Jagiellonian University, Medical College

Plan prezentacji

0. Idea eksperymentu

1. Źródło promieniowania Hamamatsu L9191

- Parametry pracy, widma
- Optymalizacja intensywności linii Ti-Kα
- Określenie rozmiarów ogniska lampy

2. Układ ogniskujący zwierciadeł Kirkpatricka-Baeza

- Pomiary ogniska wiązki promieniowania
- 3. Elementy układu pozycjonowania próbek
- 4. COST Action MP0601, Dresden 27-28.XI.2008

Idea eksperymentu

Badania konsekwencji naświetlania promieniowaniem X pojedynczych komórek oraz ich kolonii, porównanie z wynikami podobnych badań prowadzonych na mikrowiązce protonowej.

	Mikrowiązka protonowa	Mikrowiązka X
Gęstość jonizacji	duża	mała (fotoelektrony)
Średnia głębokość penetracji w komórkach	100 µm całkowity zasięg protonów o energii 3 MeV	Na głębokości 100 µm połowa początkowej intensywności wiązki 4.5 keV

Źródło promieniowania – Hamamatsu L9191

Pomiary rozdzielczości źródła

- 1. Wykonanie zdjęcia rentgenowskiego płytki wzorcowej (patternu).
- 2. Jasność pikseli wzdłuż paska matematycznie jest wynikiem splotu krzywej rozkładu normalnego oraz funkcji skoku jednostkowego.

Rozmiar ogniska lampy

Rozmiar ogniska lampy zależy od napięcia przyspieszającego oraz prądu ogniskującego cewek elektromagnetycznych. Najlepszy (najmniejszy - ok $2 \mu m$) rozmiar ogniska otrzymaliśmy przy napięciu **100 kV**.

Wielowarstwowe zwierciadła ogniskujące promieniowanie

Eliptycznie zakrzywione powierzchnie złożone z naprzemiennie napylonych cienkich warstw wykorzystują wzmocnienie promieniowania poprzez konstruktywną interferencję zgodnie z zasadą Bragga.

Zwierciadła działają zatem także jako monochromator.

$$2d\sin\theta = n\lambda$$

warstwy Cr / C Grubość 3 / 1.5 nm opymalizowane dla Ti Ka 4.5 keV

Ogniskowanie promieniowania

J. Cyrs ula jąu

Zwierciadła Kirkpatricka-Baeza

Zwierciadła wielowarstwowe wyprodukowane przez Rigaku Innovative Technologies Inc. (USA). Odległość ogniskowania - **15 mm**.

Rozmiar ogniska promieni

Elementy układu pozycjonowania próbek

PI motorized translation stages

- motion range: 15 mm
- minimum incremental motion: 50 nm
- controlling: PI software or LabVIEW

Two elements combined together enable movement in a plain

Qioptiq Zoom 160 Optical System Microscope

- motorized zoom and focus
- SHOTT's coaxial light source
- field-of-view (zoom): 16:1
- maximum resolution: **900 lp/mm**
- camera connection

Watec WAT-231S color camera

- weight: 160 g
- resolution: **450x480 px**
- video and Y/C signals output
- gamma correction and iris level control

Mikrowiązka dawniej i dziś

COST Action MP0601 , Dresden 27-28.XI.2008

http://www.cost.esf.org

http://www.shortwavelengthsources.net

DOMENY -> Programy / Akcje -> grupy

Materials, Physical and Nanosciences (MPNS)

Short Wavelength Laboratory Sources (End date: April 2011) MP06

- wg1 Modelling and Simulation
- wg2 Source Development, Improvement and Characterisation
- wg3 Integrated Systems: Sources, Optics and Detectors
- wg4 Applications

 \leftarrow Sebastian

← Kuba

AXO Dresden GmbH

Applied X-ray Optics and High Precision Deposition

http://www.axo-dresden.de

